skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Singh Bansal, Akansha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Developing accurate solar performance models, which infer solar output from widely available external data sources, is increasingly important as the grid's solar capacity rises. These models are important for a wide range of solar analytics, including solar forecasting, resource estimation, and fault detection. The most significant error in existing models is inaccurate estimates of clouds' effect on solar output, as cloud formations and their impact on solar radiation are highly complex. In 2018 and 2019, respectively, the National Oceanic and Atmospheric Administration (NOAA) in the U.S. began releasing multispectral data comprising 16 different light wavelengths (or channels) from the GOES-16 and GOES-17 satellites every 5 minutes. Enough channel data is now available to learn solar performance models using machine learning (ML). In this paper, we show how to develop both local and global solar performance models using ML on multispectral data, and compare their accuracy to existing physical models based on ground-level weather readings and on NOAA's estimates of downward shortwave radiation (DSR), which also derive from multispectral data but using a physical model. We show that ML-based solar performance models based on multispectral data are much more accurate than weather- or DSR-based models, improving the average MAPE across 29 solar sites by over 50% for local models and 25% for global models. 
    more » « less